skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Corman, Jessica R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Abstract Riparian zones, the interfaces between land and stream, perform vital ecosystem functions including transformation and retention of nutrients and sediment moving across the landscape. Although many studies assess transport through and transformation of materials in riparian zones, less is known about the direct influence of precipitation falling on these zones on material retention and transport. Additionally, few experiments can compare riparian retention to stream‐channel retention.We present a novel experimental approach to assess retention of nitrate entering as precipitation in riparian zones and compare riparian retention and movement of nitrate, other ions, sediments to and within the adjacent stream channel. We simulated an intense precipitation event with15N‐labelled nitrate as a bioactive solute and bromide as an inert tracer. This method extends tracer release approaches applied to streams worldwide and links it to processes at the aquatic/ terrestrial interface. It further allows determination of movement of materials into streams from bankside precipitation.The riparian zone removed or retained a greater proportion of nitrate than the stream relative to bromide; over half the added bromide reached the stream through a few metres of riparian zone, compared to only 0.2% of the added nitrate. Of the 0.2% that reached the stream, 30% of that nitrate was removed or retained by instream processes after travelling 60 downstream. Roughly 10% of the total15N addition ended up sequestered in the above‐ground portions of the riparian grasses by the end of the growing season, and very little of it was recovered from the soil. We saw little evidence of bulk transport of other ions or sediment from this riparian soil to the stream.Our data are consistent with the concept of high nitrate retention in vegetated riparian zones, even for nitrate falling directly upon them in the form of atmospheric deposition in precipitation. 
    more » « less
  3. Abstract It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building. 
    more » « less